Climate Science & Impacts Overview

Air Quality Workshop for Teachers July 13, 2016

Overview

- Evidence
- Impacts
- Short Lived Climate Forcers
- Taking Action
- Resources

Climate Change is Real

UNITED STATES

- The evidence is clear the unprecedented buildup of CO₂ in our atmosphere is causing global and U.S. temperatures to warm with cascading climatic changes.
- These changes are impacting society <u>now</u> and are expected to become more disruptive as CO₂ levels continue to rise.
- Our lives are connected to the climate and we can reduce the risks we face from climate change.
- <u>http://climate.nasa.gov/climate_resou</u> rces/139/

Data source: NOAA (National Oceanic and Atmospheric Administration). 2013. National Climatic Data Center. Accessed April 2013. www.ncdc.noaa.gov/oa/ncdc.html.

For more information, visit U.S. EPA's "Climate Change Indicators in the United States" at www.epa.gov/climatechange/indicators.

Recent Climate Assessments Show Climate Impacts Happening Now

- Third National Climate Assessment: Climate Change Impacts in the United States, May 2014
- Intergovernmental Panel on Climate Change Fifth Assessment Report (AR5)
 - Working Group I The Physical Science Basis finalized September 2013
 - Working Group II (impacts) and Working Group III (mitigation), released early 2014
- EPA: Indicators of Climate Change in the United States, 2014

Ten Indicators of A Warming World

Climate Change

Climate Variability

100-degree Days in 2011

Arctic Sea Ice Loss

Sea Ice Concentration (percent)

Observed Change in Very Heavy Precipitation

11

Climate Impacts Human Health

	Climate Driver	Exposure	Health Outcome	Impact
Extreme Heat	More frequent, severe, prolonged heat events	Elevated temperatures	Heat-related death and illness	Rising temperatures will lead to a increase in heat-related deaths and illnesses.
Outdoor Air Quality	Increasing temperatures and changing precipitation patterns	Worsened air quality (ozone, particulate matter, and higher pollen counts)	Premature death, acute and chronic cardiovascular and respiratory illnesses	Rising temperatures and wildfires and decreasing precipitation will lead to increases in ozone and particulate matter, elevating the risks of cardiovascular and respiratory illnesses and death.
Flooding	Rising sea level and more frequent or intense extreme precipitation, hurricanes, and storm surge events	Contaminated water, debris, and disruptions to essential infrastructure	Drowning, injuries, mental health consequences, gastrointestinal and other illness	Increased coastal and inland flooding exposes populations to a range of negative health impacts before, during, and after events.
Vector-Borne Infection (Lyme Disease)	Changes in temperature extremes and seasonal weather patterns	Earlier and geographically expanded tick activity	Lyme disease	Ticks will show earlier seasonal activity and a generally northward range expansion, increasing risk of human exposure to Lyme disease-causing bacteria.
Water-Related Infection Vibrio vulnificus)	Rising sea surface temperature, changes in precipi- tation and runoff affecting coastal salinity	Recreational water or shellfish contaminated with <i>Vibrio vulnificus</i>	Vibrio vulnificus induced diarrhea & intestinal illness, wound and blood- stream infections, death	Increases in water temperatures will alter timing and location of <i>Vibrio vulnificus</i> growth, increas- ing exposure and risk of water- borne illness.
Food-Related	Increases in temperature, humidity, and season length	Increased growth of pathogens, seasonal shifts in incidence of <i>Salmonella</i>	<i>Salmonella</i> infection, gastrointestinal outbreaks	Rising temperatures increase Salmonella prevalence in food; longer seasons and warming winters increase risk of exposure

exposure

(Salmonella)

"Climate change is a significant threat to the health of the American people."

https://health2016.globalchange.gov

Ocean Impacts of Increased Atmospheric Carbon Dioxide

Crop Yields Decline under Higher Temperatures

Water Supplies Projected to Decline

Low (2020)

(b) Climate Change Effects

Low (929)

Short Lived Climate Pollutants (SLCPs)

Some Conventional Air Pollutants Affect the Climate

- "Climate forcer" describes any gas or particle that forces the climate to change
 - Broader than "greenhouse gas", which describes a specific kind of forcing
- Examples of climate forcers include:
 - Greenhouse gases (e.g. carbon dioxide, methane, chloroflourocarbons, and ozone)
 - Aerosols (particles such as black carbon and sulfates)
- Long-lived climate forcers include:
 - Sulfur hexaflouride (3,200 years)
 - Nitrous oxide (115 years)
- Short Lived Climate Forcers stay in the atmosphere from days to months and include:
 - Ozone
 - Black Carbon (component of particulate matter)
 - Some HFCs
- It is the short atmospheric lifetime that makes SLCFs an important piece of the climate mitigation puzzle

Air Pollution is a Major Health Risk

- 7 million deaths world wide attributable to air pollution ٠
 - Increased risk of stroke, heart disease, lung cancer and respiratory diseases
- 80% of urban dwellers are breathing harmful levels of air pollution ٠
 - In areas that measure air pollution
- Despite some regional improvements, ۰ global pollution levels are increasing.
- Caused by transportation, household ۲ energy and waste management

20 µg/m³

Source: WHO Global Urban Ambient Air Pollution Database

Recent SLCP Assessments

- Hemispheric Transport of Air Pollution report (LRTAP 2010)
- Report of the Ad-hoc Expert Group on Black Carbon (LRTAP 2010)
- Integrated Assessment of Black Carbon and Tropospheric Ozone (UNEP 2011)
- Towards an Action Plan for Near-term Climate Protection and Clean Air Benefits (UNEP - 2011)
- Actions for Controlling Short-Lived Climate Forcers (UNEP 2011)
- An Assessment of Emissions and Mitigation Options for Black Carbon (Arctic Council - 2011)
- Black Carbon Report to Congress (EPA 2012)
- On Thin Ice: How Cutting Pollution Can Slow Warming and Save Lives (World Bank - 2013)

Integrated Assessment of Black Carbon and Tropospheric Ozone Summary for Decision Makers

Near-term Climate Protection and Clean Air Benefits: Actions for Controlling Short-Lived Climate Forcers

LINE Suthers Reed

We Need To Reduce SLCPs

UNEP/WMO Result for Global Temperature Change: CO₂ and BC/Methane Reductions are Complementary Strategies

Location of Emissions Matters

Normally cooling, organic carbon can be warming in the Arctic

Arctic melting creates negative Feedback loops

 \checkmark Where dark land is covered by bright snow and ice

✓ Where People and Pollution Meet

 ✓ Where precipitation patterns are impacted by aerosol emissions

SLCP Impacts on the Arctic

- Black Carbon has disproportionately large impact
 - Absorbs more heat over Arctic reflective surfaces
 - Once deposited, BC darkens snow and ice leading to greater melting
 - BC emissions from lower latitudes also important
- Ozone transported from the midlatitudes is also partially responsible for Arctic warming

(Adapted from Reiersen and Wilson, 2009)

✓ We know the sources of SLCP emissions and in many cases how to control them.

✓ These sources offer potential for integrated air quality/climate solutions

✓ Implementing these solutions can save lives, especially of the most vulnerable

Future Climate Change Depends Primarily on Emissions Levels

Projected Temperature Change

EPA Action Under Climate Action Plan

- Reducing carbon pollution from power plants
- Building a 21st century transportation sector
- Cutting energy waste in homes, businesses, and factories
- Reducing short lived forcers
- Preparing the U.S. for the impacts of climate change
- Leading international efforts to address global climate change

USEPA: Reducing GHG Emissions

- Dec 2005: Established Renewable Fuel program
- Dec 2009: EPA found GHG endanger public health and welfare.
- May 2010: GHG emission Standards for '12-'16 light duty vehicles
- May 2010: GHG permitting requirements for large GHG emitters
- Sept 2011: GHG emission Standards for medium and heavy duty vehicles
- Aug 2012: GHG emission Standards for '17-'25 light duty vehicles
- Aug 2015: GHG emission standards for new and existing power plants
- Aug 2015: Proposed methane emission standards for municipal solid waste landfills.
- May 2016 Emission standards for oil and gas sources. EPA is also collecting additional information needed to develop regulations to reduce methane from existing oil and gas sources.

Combatting Short Lived Climate Pollutants

- International efforts and agreements to reduce emissions SLCPs
 - Climate and Clean Air Coalition
 - Goal: accelerate reductions in BC, methane, and HFCs
 - Country partners commit to mitigating short-lived climate pollutants in their own countries and helping others take similar actions
 - Global Methane Initiative
 - Works with 42 partner countries and an extensive network of over 1,100 private sector participants to reduce methane emissions.
 - Convention on Long Range Transboundary Air Pollution Gothenburg Protocol
 - First international treaty to take steps to curb BC emissions. Specific provisions:
 - Parties should develop national BC emissions inventories and projections.
 - Parties "should give priority" to black carbon when implementing measures to control PM.
 - Arctic Council
 - Several SLCP Task Forces focused on assessment and mitigation projects to help slow Arctic and global climate change and improve public health.
 - Global Alliance for Clean Cookstoves
 - Goal: 100 million clean and efficient stoves by 2020

- EPA's Climate Page: <u>http://epa.gov/climatechange/</u>
- EPA's Links for Educators: <u>http://www.epa.gov/climatechange/links.html</u>
- NOAA Teaching Climate: <u>https://www.climate.gov/teaching</u>
- USG Global Change Research: <u>http://www.globalchange.gov/</u>

- NASA: <u>http://climate.nasa.gov/education/</u>
- Intergovernmental Panel on Climate Change: <u>http://www.ipcc.ch/</u>
- Climate and Clean Air Coalition: <u>http://www.unep.org/ccac/</u>

Questions???

terry.sara@epa.gov

Factors Affecting Climate Change

- Many factors, both natural and human, can cause changes in Earth's energy balance, including:
 - Variations in the sun's energy reaching Earth
 - Changes in the reflectivity of Earth's atmosphere and surface
 - Changes in the greenhouse effect, which affects the amount of • heat retained by Earth's atmosphere
- Recent climate changes, ٠ however, cannot be explained by natural causes alone.
- 97% or more of actively ٠ publishing climate scientists agree that climate-warming trends over the past century are extremely likely due to human activities.
- Most of the leading scientific ٠ organizations worldwide have issued public statements endorsing this position.

Separating Human and Natural Influences on Climate

Surface Temperature & the Sun's Energy

